

<https://doi.org/10.5281/zenodo.18617956>

Integrating Artificial Intelligence (AI) in Redesigning Curricula that Foster Creativity and Innovation in Education

Tochukwu Isaac Egwuatu¹, Geoffrey Chidi Onyebuchi PhD² & Njideka Rosemary Ifeduba³

¹Nwafor Orizu College of Education, Nsugbe, isaacegwatu65@gmail.com¹

²Nnamdi Azikiwe University, Awka, gc.onyebuchi@unizik.edu.ng²

³St. Paul's College of Education, Nnewi, rosemarynjideka89@gmail.com³

ABSTRACT

In an age defined by rapid technological change, traditional curricula often fail to nurture the creativity and innovative thinking essential for future success. This paper argues that the integration of Artificial Intelligence (AI) into curriculum design is not only beneficial but imperative for fostering these skills. AI enables personalized learning, enhances project-based learning environments, provides tools that can act as co-creators in the learning process. Furthermore, AI can support educators in assessing creative growth through intelligent analytics and adaptive feedback system. I contend that when implemented ethically and thoughtfully, AI can transform classrooms into dynamic hubs of innovation. Educational stakeholders must urgently reframe curricula to embrace AI, not as a threat but as a partner inculcating 21st-century creativity.

Keywords: Artificial Intelligence (A), Curriculum Redesigning, Creativity and Innovation in Education, Education.

INTRODUCTION

Over the past few years, the landscape of education worldwide has witnessed an accelerated embrace of artificial intelligence (AI) as a transformative force in curriculum design. AI is increasingly seen not merely as a delivery mechanism but as a collaborative partner in fostering student creativity, adaptive learning, and deeper engagement in innovation-oriented tasks. A recent systematic review of generative AI in teaching and learning found that students working with AI collaborators significantly outperform their peers on creative tasks—a moderate effect size (Hedges' $g \approx 0.27$)—though diversity of ideas can decline (Holzner, Maier, & Feuerriegel, 2025). This underscores AI's potential as an augmentative tool that enhances human creativity when thoughtfully applied.

Within K-12 and early education settings, pedagogical design centered around AI is rapidly evolving. A systematic review by Yue, Jong, and Dai (2022) revealed that AI education in primary schools—spanning STEM, language, arts, and holistic project-based learning—is most effective when built on constructivist, experiential, and AI-assisted pedagogies that preserve student agency and reflection.

In regional contexts across Africa, AI adoption in science education is being studied from the lens of teacher perspectives. Nja et al. (2023) surveyed science teachers and found growing interest in AI for classroom use, accompanied by concerns around self-efficacy, training, and infrastructure. Across the continent, studies highlight AI's potential to support collaborative learning, feedback systems, and inclusive practices when adapted to school-specific contexts.

In the Nigerian context, emerging literature offers evidence of both opportunity and constraint. A 2024 review of AI trends specific to Nigerian education analyzed 74 high-impact articles published between 2008 and 2022. It found that while basic AI tools (e-learning, performance prediction, multimedia platforms) are increasingly adopted, more advanced systems like intelligent tutoring, robotics, and AI-integrated LMS are still rare (Adetunji, 2024). The review strongly recommended learning from global best practices while building local capacity through professional development and infrastructure investment.

Empirical studies in Nigeria further affirm AI's potential. Ekwu, Ikwuanusi, and Okonkwo (2025) showed that integrating AI within STEM curricula supports personalized learning pathways, virtual labs, and better student engagement—positioning AI as a key driver for national scientific and technological advancement. Complementing this, Kehinde-Awoyele, Adeowu, and Oladejo (2024) investigated AI-based instructional strategies and documented positive effects on student engagement and learning outcomes, particularly when AI tools were blended with teacher facilitation.

As another dimension, research into student perceptions reveals moderate awareness of AI's benefits alongside concerns regarding privacy, technical challenges, and the availability of support infrastructure. Abubakar, Onasanya, and Ibrahim (2024) surveyed 421 Nigerian undergraduates and found optimism about AI's role in improving pedagogy—but also calls for greater awareness-building, infrastructure enhancement, and educator training to ensure effective integration.

A particularly notable study in Nigeria, published in early 2025, explored pre-service teachers' intention to adopt AI in inclusive classrooms. Using the UTAUT framework, Adigun, Tijani, Haihambo, and Enock (2025) found that technological self-efficacy and learning value significantly influenced willingness to integrate AI. Their findings underscore the importance of teacher readiness and system-level support for effective curriculum innovation.

Collectively, this emerging body of work illustrates a clear pattern: globally, AI is validated as a support for creative and personalized learning; regionally across Africa, educators are exploring culturally and contextually relevant AI applications; locally in Nigeria, early adoption in STEM and pedagogical strategies shows potential, yet remains constrained by resource gaps, educator preparedness, and policy frameworks.

These trends build a robust, peer-reviewed foundation asserting that integrating AI into curricula can meaningfully foster creativity, adaptive thinking, and innovation. However, the transformative impact depends on intentional design, teacher empowerment, infrastructure readiness, and policy support. These systemic considerations form a compelling basis for pursuing your proposed PhD seminar, positioning AI as a co-creator in curriculum redesign rather than a mere technological adjunct.

In the contemporary era of rapid technological transformation, education systems across the globe are struggling to meet the evolving demands of creativity and innovation. Despite an increased awareness of 21st-century skills, traditional curricula remain rigid and predominantly examination-driven, often stifling rather than stimulating creative thinking (Wang, 2021). This disconnection becomes even more concerning when viewed in the context of emerging technologies like Artificial Intelligence (AI), which are reshaping every facet of human life—from communication and commerce to healthcare and education (Holmes et al., 2022).

In many educational contexts, especially in developing nations, AI is still perceived as an advanced, abstract concept rather than an integrated pedagogical tool. Consequently, the potential of AI to personalize learning, simulate complex real-life scenarios, and serve as a co-creative partner in student projects is underutilized (Zawacki-Richter et al., 2019). Moreover, most existing curricula do not provide adequate frameworks for educators to meaningfully incorporate AI into lesson delivery or assessment, thereby maintaining a gap between technological advancement and pedagogical practice. The central problem, therefore, lies not just in the lack of infrastructure or resources, but in the absence of a curriculum that is reimagined through the lens of AI and deliberately aligned to foster innovation. Without such curricular transformation, educational systems will continue to produce graduates who are ill-equipped for the demands of a highly dynamic, AI-augmented world.

Significance of the Paper

This study is significant on multiple fronts. For policymakers, it provides critical insights into how AI can serve not merely as an add-on but as a transformative force in education. For curriculum developers, it presents a roadmap for reimagining traditional syllabi to reflect the realities of a technology-driven world. For teachers, it offers pedagogical models and tools for integrating AI into everyday teaching practices, thereby supporting diverse learners more effectively.

At the global level, this paper contributes to the discourse on Education 4.0, aligning with the UNESCO Future of Education Report (2021), which emphasizes the need to transform education systems to be more inclusive, equitable, and innovation-oriented. Regionally and locally, especially within sub-Saharan Africa, where youth unemployment and educational disconnect remain high, the study proposes

a forward-looking curriculum that empowers students to be creators rather than consumers of knowledge (Tadesse & Muluye, 2022).

The scope of this study is centered on higher and secondary education systems, with a particular focus on curriculum redesign that integrates AI in fostering creativity and innovation. The paper draws insights from global trends but includes contextual analysis from African and Nigerian education systems, where adoption of educational technologies remains uneven.

While the discussion references primary education where relevant, the analysis is primarily situated in the post-basic education context due to the maturity required for complex creative engagement and AI usage. The paper is also delimited to curricular and pedagogical perspectives, excluding broader infrastructural or administrative dynamics, although these are acknowledged as influential variables.

The Theoretical Concept of AI Driven Education

This study is underpinned by three interrelated theoretical frameworks that guide the integration of AI in curriculum redesign: Constructivist Learning Theory, Technological Pedagogical Content Knowledge (TPACK), and Innovation Diffusion Theory. Constructivist Learning Theory posits that learners actively construct knowledge through experience and reflection, rather than passively absorbing information. This theory supports the use of AI to create dynamic, interactive, and learner-centered environments where students can explore, experiment, and co-create knowledge (Richardson, 2020). AI tools such as intelligent tutoring systems, virtual reality simulations, and generative platforms align with constructivist principles by allowing for personalized and experiential learning.

The Technological Pedagogical Content Knowledge (TPACK) framework provides a model for understanding how teachers can integrate technology into teaching in a way that preserves and enhances both content and pedagogy (Koehler et al., 2022). AI fits into this model as a complex tool that requires educators to align content knowledge with effective digital strategies and adaptive teaching methods.

Lastly, Rogers' Innovation Diffusion Theory explains how new ideas and technologies are adopted within social systems. Applied to education, it highlights the importance of leadership, early adopters, and contextual adaptation in the successful implementation of AI in curriculum (Greenhalgh et al., 2020). Recognizing the diverse pace of adoption in different regions, especially between high-income and low-income contexts, this theory provides a useful lens for understanding the diffusion of AI in education.

Historical Overview of Curriculum Design and Innovation

Curricular thinking has evolved dramatically from rigid, teacher-centered models whose hallmark was standardized content delivery paired with rote memorization. These earlier designs, often rooted in industrial-era demands for uniformity and efficiency, prioritized conformity and measurable outputs over creativity or individualized growth (Voogt & Roblin, 2020). Yet as societies transitioned toward knowledge-based and innovation-driven economies, educational theorists began advocating for curricula that foreground critical thinking, collaboration, and contextual relevance. The resulting frameworks emphasize fluidity, learner agency, and real-world problem-solving, signaling a shift from knowledge transmission to knowledge creation—a shift that provides fertile ground for integrating adaptive technologies like AI into curriculum design (Škrtić et al., 2024).

Subsequent waves of reform further underscored the need for curricula to adapt dynamically to learners' varied needs and local contexts. The introduction of competency-based education models and the push from international bodies such as OECD's Learning Compass and UNESCO's Futures of Education reflect a growing global consensus: curricula must evolve to foster transferable skills like creativity, adaptability, and digital literacy (Fullan & Langworthy, 2020). This growing alignment between curriculum and emerging economic needs sets the stage for AI as a transformative partner—beyond a delivery mechanism—enabling responsive, iterative learning designs that prioritize innovation and creative engagement (Škrtić et al., 2024).

Role of Creativity and Innovation in 21st-Century Education

Creativity and innovation are now widely recognized as foundational learning outcomes rather than optional electives. The World Economic Forum and other global assessments consistently highlight

creativity, critical thinking, and innovation among the most vital competencies for future readiness (World Economic Forum, 2023). Curriculum reforms increasingly emphasize learning environments that foster open-ended inquiry, divergent thinking, and authentic problem-solving. Research confirms that when curricula are structured around project-based, interdisciplinary learning experiences, students not only gain content knowledge but also strengthen their creative cognition and innovation potential (Zailuddin et al., 2024).

Moreover, emotionally supportive learning contexts—with psychological safety, collaborative norms, and reflection—play a critical role in nurturing innovation. Studies demonstrate that learners engaged in creativity-centered pedagogies report enhanced motivation, agency, and willingness to explore new ideas (Su, 2022). Teachers report a reduction in performance anxiety when students engage in meaningful, purpose-driven creative tasks supported by adaptive scaffolding. These findings underscore that real innovation emerges not from content alone but from pedagogical designs that empower learners to navigate uncertainty and co-create knowledge within rich, supportive environments (Zailuddin et al., 2024).

Emergence of Artificial Intelligence in Education

AI Tools in Personalized Learning

Artificial Intelligence is revolutionizing personalized learning through adaptive systems that analyze real-time learner data and dynamically tailor instruction. A comprehensive review of educational AI tools in higher education found that roughly half of the studies reported significant improvements in learner outcomes via personalized pacing, targeted feedback, and adaptive scaffolding (Hardaker & Glenn, 2025). These systems enable differentiated pathways that honor individual pace and style—creating cognitive space for creativity by freeing students from one-size-fits-all instruction and allowing deeper exploration where needed (International Journal of Information and Learning Technology, 2025). At the same time, scholars caution that the efficacy of personalized AI hinges on careful design that maintains transparency, equity, and learner autonomy. Without ethical safeguards, AI personalization may inadvertently reinforce disparities or limit the scope of intellectual exploration. Responsible implementation requires mechanisms for consent, algorithmic accountability, and adaptive autonomy to ensure AI supports—not supplants—creative student agency (Hardaker & Glenn, 2025).

Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS) have matured from rule-based, drill-and-practice tools into sophisticated adaptive platforms that deliver context-aware feedback mimicking human tutors. A systematic review documented ITS-driven learning gains, especially in STEM disciplines, where scaffolding supports conceptual understanding, metacognitive reflection, and error-triggered explanations (Son, 2024). Enhanced versions now incorporate affective computing to respond to learner emotions and self-regulation needs—fostering deeper engagement and self-directed innovation (Fernández-Herrero, 2024). However, research also notes that while ITS can augment creative thinking, they are not replacement for human mentorship. Ethical design must confront issues of emotional misreading, over-reliance, and classroom relational dynamics. Educators are urged to act as mediators whose pedagogical insight shepherds AI-generated feedback into reflective practice conducive to innovation (Son, 2024; Fernández-Herrero, 2024).

AI for Formative and Summative Assessment

AI's transformative potential extends into assessment by enabling tools that evaluate higher-order competencies, offer adaptive feedback, and support student self-evaluation at scale. A systematic literature synthesis highlighted how AI-enabled assessment tools reduce instructor workload, improve score consistency, and foster learner reflection through automated rubrics and voice/text analysis (International Journal of Educational Technology in Higher Education, 2025). These tools are especially valuable in evaluating creative outputs—such as narratives, visual design, or spoken work—which are difficult to assess through traditional methods. Nonetheless, ethical concerns remain prominent: AI grading operators are often opaque, raising questions about bias and fairness. Furthermore, there's a risk of students perceiving assessment as automated checkbox rather than evaluative engagement. Scholars

thus recommend embedding AI within broader pedagogical frameworks where educators validate AI-generated assessments and students engage in reflexive dialogues about their creative process (International Journal of Educational Technology in Higher Education, 2025).

Project-Based and Inquiry-Based Learning Enhanced by AI

Project-Based Learning (PBL) and Inquiry-Based Learning (IBL) are pedagogical paradigms where students drive their learning through sustained inquiry and real-world tasks. Integrating AI into these approaches can enhance ideation, iterative design, and critical evaluation. For instance, Zha et al. (2024) conducted an experiment with 31 middle-school students using LLMs to support creative PBL projects across language, science, and design tasks. Their findings revealed that AI significantly enhanced creative fluency and coherence at each project phase. Still, students and mentors displayed ambivalence—concerned about dependency and ethical use—highlighting the nuanced dynamics of learner-AI collaboration. In higher education, co-design research involving college students investigated using AI interaction data as new forms of assessment evidence. Zheng et al. (2024) found that students who helped design AI-augmented PBL ecosystems envisioned systems that make creative thinking visible, collaborative patterns traceable, and innovation pathways assessable. This insight suggests that AI can function not only as a resource but as an analytic partner in understanding and scaffolding creativity, enabling richer feedback loops and reflective metacognition.

Challenges and Ethical Concerns in AI Integration

Usage of Large Language Models (LLMs) in education raises pressing ethical and educational challenges. A comprehensive scoping review identified immediate risks including over-reliance, erosion of critical thinking, algorithmic bias, and data opacity (Yan et al., 2023). The ease of generating responses can inadvertently promote academic shortcuts, weakening cognitive skill-building rather than enhancing it. As a result, educators call for pedagogical designs that balance AI utility with human learning development and intentional cultivation of essential skills (Smart Learning Environments roadmap, 2024). Institutional and structural concerns further amplify these risks. Unequal access to AI tools can reinforce existing digital divides, particularly in resource-constrained contexts. The commodification of student data by proprietary AI platforms raises questions about ownership, student agency, and exploitation (Ethics of AI in Primary and Secondary Education, 2025). Power imbalances arise when private developers control educational data infrastructures—often without transparency or localization—leading to pedagogy that privileges market models over learners' voices. To navigate these challenges, researchers advocate for ethically grounded frameworks that center student rights, teacher agency, and culturally responsive design.

Case Studies / Best Practices in AI-Supported Creative Curricula

Concrete examples of AI-enhanced creativity-rich curricula are emerging globally. In West Africa, Kwame for Science, a bilingual AI assistant, has been deployed in under-resourced schools to support STEM learning. Evaluations indicate that students using Kwame showed increased engagement, computational thinking, and formulation of scientific questions—illustrating AI's potential to democratize access to innovation-driven learning (Boateng et al., 2023; Boateng, 2024). In design education, Zailuddin et al. (2024) documented how AI tools facilitated rapid idea generation and prototyping while requiring mentor scaffolding to ensure reflective critique. Students produced more inventive designs when AI was used as a generative partner, with faculty guiding evaluative reflection on AI outputs. These cases illustrate that AI can enable creative depth—but only when embedded within pedagogical designs that preserve human judgment, context-awareness, and strategic reflection.

Summary and Research Gaps

Across the literature, AI shows clear potential to amplify creativity, personalize learning, and support innovation when thoughtfully integrated into curricula. These benefits include improved learner engagement, adaptive scaffolding in PBL, and scalable assessment of creative outputs. Yet persistent gaps limit fuller implementation: there is scarce longitudinal research on sustained creative growth, limited exploration of AI in low-resource or Global South contexts, and little synthesis on aligning AI usage with teacher roles and ethical design principles. Critically, further inquiry is needed into how AI-supported

curricula can be co-designed with students and educators, situating AI as collaborative partner rather than doctrine. There is also a need for frameworks that integrate ethical governance—privacy, bias mitigation, data sovereignty—within creative curricular design. These gaps underscore the importance of localized, participatory research to shape AI-integrated curriculum redesign—particularly in settings like Nigeria where equity, infrastructure, and cultural relevance are pivotal considerations.

RESEARCH METHOD

To explore or pilot an AI-curriculum integration framework aimed at fostering creativity and innovation, a mixed-methods design is recommended. Quantitative components might include pre- and post-test measures of learners' creative performance, using validated instruments such as those derived from Kovalkov et al.'s (2022) automatic creativity assessment model tailored for educational projects. Additionally, surveys measuring teacher self-efficacy, technology acceptance, and AI literacy can provide statistical insights into readiness and impact—for instance adapting the scale employed in Rajapakse et al.'s (2024) self-efficacy study of Sri Lankan teachers.

Complementing quantitative data, qualitative inquiry through interviews, focus groups, and classroom observations offers depth on how teachers and students engage with AI tools, interpret creativity-oriented tasks, and negotiate pedagogical tensions. For example, Ravi et al.'s (2023) study exploring teachers' experiences deploying the MIT RAICA AI curriculum provides valuable lessons on educator beliefs and adaptation processes in middle-school contexts. Participatory action research (PAR) cycles are particularly useful: they engage educators in iterative design, reflection, and adaptation—ensuring contextually relevant integration that aligns with ethical and pedagogical aims.

Proposed AI Curriculum Integration Framework

The framework is organized around four structural curricular elements: Goals, Content, Pedagogy, and Assessment. Goals shift from mere AI literacy toward developing learner capacities for creative ideation, critical inquiry, and innovation-driven problem-solving. These goals draw upon insights from generative AI literature showing improved creative engagement when used collaboratively and meaningfully in learning tasks. Content integrates AI-related experiences within core disciplinary themes—embedding generative AI prompts, case-based ethical dilemmas, and exploratory design challenges in subject areas. Teacher education programs, like those analyzed in Nyaaba's (2024) study in Ghana, highlight how generative AI can free instructors to focus on pedagogy and creativity rather than content delivery.

Pedagogy emphasizes co-creative, scaffolded inquiry, where AI tools act as partners in brainstorming and ideation. Students engage in prompt design, reflection, and creative iteration. This is informed by frameworks such as the MIT RAICA AI curriculum pilot—which excelled when educators created play-based, ethically framed, AI-mediated learning modules. Assessment now includes creativity metrics derived from AI-interaction logs—tracking fluency, flexibility, and originality as modeled in Kovalkov et al.'s automatic creativity assessment for Scratch projects. These analytics, paired with reflective student narratives and peer assessments, provide holistic evaluation of creative and innovation-oriented learning trajectories.

Roadmap for Implementing AI in Curricula

Institutional readiness requires an audit of infrastructure, internet reliability, and stakeholder awareness. Investments in AI literacy for administrators and building pilot cohorts—such as teacher education programs or willing schools—pave the way for broader rollout. Rajapakse et al.'s (2024) findings highlight that teacher self-efficacy is often low without structured support and contextualized training. Teacher training and upskilling should include scaffolded modules: conceptual introduction to AI, ethical prompt engineering, classroom facilitation strategies, and creativity-enhanced lesson co-design. Ravi et al.'s (2023) RAICA deployment showed that teachers benefit from extended PD, peer communities, and time to internalize innovations. Policy and ethical considerations demand transparent protocols governing AI use: data privacy, consent, bias mitigation, and academic integrity. The systematic review of generative AI outlines ethical risks such as overreliance and reduced critical thinking, advocating for explicit AI literacy curricula and governance frameworks (Institutional policies must define acceptable AI tools, usage norms, and monitoring mechanisms).

Expected Impact on Learners and Teachers

Learners engaging with AI-infused curricula are expected to exhibit enhanced creative capacity, evidenced by greater originality, adaptability, and ideation fluency—consistent with results emerging from generative AI impact studies (Ogunleye et al., 2024). The integration of AI within project-based, creative tasks fosters deeper engagement and more reflective learning pathways. Teachers, in turn, benefit through reduced administrative overhead and enhanced instructional insight. AI tools can support formative feedback and content scaffolding, freeing educators to focus on mentoring creative thinking. Research highlights that teacher professional identity evolves positively when they experience increased collaboration with AI as a pedagogical partner.

Monitoring, Evaluation, and Continuous Improvement

A robust evaluation model should incorporate mixed-method indicators: quantitative metrics such as creativity scores, engagement rates, and self-efficacy scales; qualitative data including reflective logs, focus group feedback, and classroom observations. PAR cycles enable iterative refinement: after each pilot phase, stakeholders reflect on successes, challenges, and adapt curriculum, tools, and assessments accordingly—ensuring responsiveness to local needs and ethical concerns. Periodic impact assessment (e.g., six months post-implementation) can establish longitudinal insights into creativity development. This approach aligns with the meta-roadmap provided by the systematic review of AI in education, which calls for continuous evaluation and ethical governance across iterative cycles.

CONCLUSION AND RECOMMENDATIONS

This chapter offers a detailed, research-informed design for integrating AI into curricular frameworks that nurture creativity and innovation. By combining mixed-methods research, co-design frameworks, scaffolded pedagogy, and ethical oversight, the proposed model positions AI as a co-creative force—not a replacement—for human-led education.

Practical recommendations include launching pilot projects with teacher cohorts, embedding AI literacy within initial teacher training, crafting institutional AI-use policies, and establishing multi-cycle evaluation mechanisms. Priority should be given to culturally responsive, equity-oriented adaptations—particularly in resource-constrained settings. Ultimately, this structure aims to reimagine curricula as dynamic, AI-enabled ecosystems that empower both teachers and students to co-create innovative learning futures

REFERENCES

Adetunji, B. (2024). Analysis of emerging trends in artificial intelligence for education in Nigeria. *Discover Artificial Intelligence*, 4, Article 110. https://doi.org/10.1007/s44163-024-00163-y

Adigun, O. T., Tijani, F. A., Haihambo, C. K., & Enock, S. L. (2025). Understanding pre-service teachers' intention to adopt and use artificial intelligence in Nigerian inclusive classrooms. *Frontiers in Education*, 10, 1519472. https://doi.org/10.3389/feduc.2025.1519472

Abubakar, U., Onasanya, S. A., & Ibrahim, H. A. (2024). Student perspectives and impact of AI integration in pedagogical practices in Nigerian tertiary institutions. *Advances in Mobile Learning Educational Research*, 4(2), 1135–1148. https://doi.org/10.25082/AMLER.2024.02.008

Beghetto, R. A. (2021). *Creativity in teaching and teaching for creativity: Reflective narratives from education innovators*. Routledge.

Boateng, G., et al. (2023/2024). Evaluations of Kwame for Science AI tutor in West African schools. *Smart Learning Environments Proceedings*.

Ekwu, U. S., Ikwuanusi, E. N., & Okonkwo, P. C. (2025). Integrating STEM education and artificial intelligence (AI): A catalyst for global scientific and technological advancement in Nigeria. *Faculty of Natural and Applied Sciences Journal of Mathematics and Science Education*, 6(2), 102–108.

Fernández-Herrero, J. (2024). Evaluating recent advances in affective intelligent tutoring systems: A scoping review of educational impacts and future prospects. *Education Sciences*, 14(8), 839. https://doi.org/10.3390/educsci14080839

Greenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., & Hughes, G. (2020). Beyond adoption: A new framework for theorizing and evaluating nonadoption, abandonment, scale-up, spread, and sustainability of health and care technologies. *Journal of Medical Internet Research*, 22(11), e22452. https://doi.org/10.2196/22452

Hardaker, G., & Glenn, L. E. (2025). Artificial intelligence for personalized learning: A systematic literature review. *International Journal of Information and Learning Technology*, 42(1), 1–14. https://doi.org/10.1108/IJILT-07-2024-0160

Holmes, W., Bialik, M., & Fadel, C. (2022). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.

Holzner, N., Maier, S., & Feuerriegel, S. (2025). Generative AI and creativity: A systematic literature review and meta-analysis. arXiv preprint. https://doi.org/10.48550/arXiv.2405.10523

International Journal of Educational Technology in Higher Education. (2025). Design and assessment of AI based learning tools in higher education: A systematic review. *IJETHE*, 22, 42. https://link.springer.com/article/10.1186/s41239-025-00540-2

Kehinde-Awoyele, A. A., Adeowu, W. A., & Oladejo, B. (2024). Enhancing classroom learning: The impact of AI based instructional strategies on student engagement and outcomes. *International Journal of Research and Innovation in Social Science*.

Koehler, M. J., Mishra, P., Kereluik, K., Shin, T. S., & Graham, C. R. (2022). The Technological Pedagogical Content Knowledge (TPACK) Framework. In *Handbook of Technological Pedagogical Content Knowledge (TPACK) for Educators* (2nd ed.). Routledge.

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2022). Intelligence unleashed: An argument for AI in education. Oxford Internet Institute.

Mustafa, M. Y., Tlili, A., Lampropoulos, G., et al. (2024). A systematic review of literature reviews on artificial intelligence in education (AIED): A roadmap to a future research agenda. *Smart Learning Environments*, 11, 59. https://doi.org/10.1186/s40561-024-00350-5

Nja, C. O., Idiege, K. J., Uwe, U. E., et al. (2023). Adoption of artificial intelligence in science teaching: From the vantage point of African science teachers. *Smart Learning Environments*, 10, 42. https://doi.org/10.1186/s40561-023-00261-x

Rajapakse, C., Ariyaratna, W., & Selvakann, S. (2024). A Self-Efficacy Theory-based study on the teachers' readiness to teach artificial intelligence in public schools in Sri Lanka. arXiv preprint. https://doi.org/10.48550/arXiv.2412.19425

Richardson, V. (2020). Constructivist pedagogy. In *Contemporary Theories of Learning* (2nd ed., pp. 23–36). Routledge.

Son, T. (2024). Intelligent tutoring systems in mathematics education: A systematic literature review using the SAMR model. *Computers*, 13(10), 270. https://doi.org/10.3390/computers13100270

Tadesse, T., & Mulye, W. (2022). The integration of 21st-century skills in African higher education: A systematic review. *Educational Research for Policy and Practice*, 21(1), 63–86. https://doi.org/10.1007/s10671-021-09286-y

UNESCO. (2021). Reimagining our futures together: A new social contract for education. https://unesdoc.unesco.org/ark:/48223/pf0000379707

Wang, Q. (2021). Understanding creativity in education: A review of selected literature. *International Journal of Educational Research*, 109, 101823. https://doi.org/10.1016/j.ijer.2021.101823

Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G., & Gašević, D. (2023). Practical and ethical challenges of large language models in education: A systematic scoping review. arXiv

preprint.

<https://doi.org/10.48550/arXiv.2303.13379>

Yue, M., Jong, M. S.-Y., & Dai, Y. (2022). Pedagogical design of K-12 artificial intelligence education: A systematic review. *Sustainability*, 14(23), 15620. <https://doi.org/10.3390/su142315620>

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education—where are the educators? *International Journal of Educational Technology in Higher Education*, 16(1), 1–27. <https://doi.org/10.1186/s41239-019-0171-0>

Zheng, C., Yuan, K., Guo, B., Mogavi, R. H., Peng, Z., Ma, S., & Ma, X. (2024). Charting the future of AI in project-based learning: A co-design exploration with students. *arXiv preprint*. <https://doi.org/10.48550/arXiv.2401.14915>

Zha, S., Qiao, Y., Hu, Q., Li, Z., Gong, J., & Xu, Y. (2024). Designing child-centric AI learning environments: Insights from LLM-enhanced creative project-based learning. *arXiv preprint*. <https://doi.org/10.48550/arXiv.2403.16159>