

International Journal of Spectrum Research in Education & Humanities (IJSREH) 1(4), October-December, Pages 188-193

© Noble City Publishers ISSN: 3092-9539

https://doi.org/10.5281/zenodo.17733940

The Essential Nexus: Differentiating Instructional Technology and Educational Technology for Systemic Reform

Dr. Zakari, Muhammad Jamil¹ & Tyonyion Richard Sughnen²

¹Federal College of Education (Technical), Keana, Nasarawa State, <u>muhdjamilzakari77@gmail.com</u>
²Instructional Technology, Department of Educational Foundations, Nasarawa State University, Keffi
tyonyion.trs@gmail.com

ABSTRACT

The fields of Educational Technology (EduTech) and Instructional Technology (InsTech) are frequently conflated, yet their conceptual scopes while deeply interconnected possess critical distinctions that determine professional practice, policy formulation, and resource allocation (Halimatou & Yang, 2014). While Educational Technology represents the broader, systemic field, encompassing philosophical inquiry, administration, curriculum development, and management of educational systems (Krishna, 2020), Instructional Technology conversely functions as a focused subset, concerned specifically with the application of technological processes and resources to enhance the immediate teaching and learning environment, aiming for improved instructional effectiveness (Halimatou & Yang, 2014; Lee et al., 2002). Through a thorough theoretical and literature review, this scholarly examination uses the framework provided by the Association for Educational Communications and Technology (AECT) to delineate these scopes, arguing that a precise understanding is vital for key educational stakeholders. Clear definitions inform the strategic work of teachers in designing learning experiences, guide school administrators in prioritizing infrastructure and equity, and empower policy makers to fund systemic reform, address the digital divide, and ensure high-quality professional development.

Keywords: Educational Technology, Instructional Technology, AECT, Digital Divide, Instructional Design

INTRODUCTION

The integration of technological processes and resources has fundamentally transformed the system of modern education, giving rise to specialized and dynamic fields of study. Consequently, two terms, Educational Technology (EduTech) and Instructional Technology (InsTech) are often used interchangeably, leading to ambiguity in research, professional roles, and resource planning (Halimatou & Yang, 2014). However, for faculty, practitioners, and leaders committed to leveraging technology to advance effective teaching and learning, recognizing the relationship and precise boundaries between these domains is paramount. This paper through a thorough literature review examines the similarities and differences between this two fields. It defines and compares Instructional Technology and Educational Technology, subsequently articulating the critical importance of these distinctions for teachers, school administrators, and policy makers.

Conceptual Distinctions: Scope, Focus, and Application

While the Association for Educational Communications and Technology (AECT) has historically treated the terms as largely synonymous in their comprehensive definitions (Januszewski & Molenda, 2008), a functional separation is widely adopted in practice, primarily regarding scope (Instructional Technology Council, 2014).

Educational Technology (EduTech): The Macro-Level System

Educational Technology is the overarching discipline, representing the broadest application of technology across the entire educational enterprise. According to the 2023 AECT definition, EduTech is defined as the "ethical study and application of theory, research, and practices to advance knowledge, improve learning and performance, and empower learners through strategic design, management,

implementation, and evaluation of learning experiences and environments using appropriate processes and resources" (AECT, 2023). EduTech's scope encompasses all aspects of the learning ecosystem, including:

- i. Philosophical and Theoretical Underpinnings: The study of how technology influences education, which includes the underlying philosophical assumptions that inform research, such as interpretivism and constructivism (Krishna, 2020).
- ii. Systemic Management and Administration: Functions such as budgeting, infrastructure investment, compliance, and compulsory attendance tracking.
- iii. Curriculum Development and Literacy: The integration of technology across broad subject areas, including promoting technological literacy and computer science to prepare students for a digital world (NASBE, 2023).

In essence, Educational Technology is the strategic manual or governance structure for technology in education.

Instructional Technology (InsTech): InsTech specifically focuses on the use of technology to enhance effective teaching and learning which are the raison d'etre or primary concerns of any educational institution (Halimatou & Yang, 2014; Nkom 2017; Lee et al., 2002). AECT 1994 defined instructional technology as the theory and practice of design, development, utilization, management, and evaluation of processes and resources for learning. While working as the editor of the landmark 1970 report to the U.S. Congress by the Commission on Instructional Technology, Sidney G. Tickton defined instructional Technology as a systematic way of designing, carrying out, and evaluating the total process of learning and teaching in terms of specific objectives, based on research in human learning and communication and employing a combination of human and non-human resources to bring about more effective instruction. From the above definitions we can see that InsTech concentrates on the systematic design, development, and delivery of learning materials and methods for a specific instructional context (Instructional Technology Council, 2014).

Key characteristics of Instructional Technology

As pointed out by Instructional Technology Council, 2014, the following are the key characteristics of instructional technology:

- i. Focus on Instruction: Applying various tools, techniques, and strategies to support the communication of learning material.
- ii. Design Models: The use of instructional design models, such as the Dick & Carey Model, to structure instruction rooted in systematic design (Dick, Carey, & Carey, 2009). Historically evolving from military training and programmed instruction rooted in behaviorism, modern InsTech approaches lean toward constructivism.
- iii. Performance Improvement: The objective of InsTech is often to ensure instructional effectiveness and efficiency, leading predictably to quality learning products and changes in capabilities (Januszewski & Molenda, 2008). InsTech is thus the tool or the tactical application used to bring instruction to life, executing technology-driven methods for both online and offline models.

Similarities: Shared Foundational Goals

Despite their differences in scope, EduTech and InsTech share a fundamental purpose: the advancement of learning and performance (AECT, 2023). Both fields rely on a rich body of educational research and theoretical frameworks, recognizing that successful technology integration requires balancing Content Knowledge, Pedagogical Knowledge, and Technological Knowledge within the Technological, Pedagogical, and Content Knowledge (TPACK) framework (Mishra & Koehler, 2006). Historically, both disciplines evolved from military training models but have since shifted toward more constructivist approaches that facilitate active, learner-centered environments (Tyonyion & Zakari 2025c).

Key Overlaps

Despite their distinctions, educational technology and instructional technology share significant common ground. Both fields fundamentally aim to utilize technology to improve teaching and learning processes. Instructional design, which is a core component of instructional technology, is also explicitly recognized as an integral part of educational technology. This overlap highlights that the systematic process of creating effective learning experiences is central to both disciplines, regardless of their broader or narrower focus.

Furthermore, both fields draw heavily from common theoretical foundations, including behaviorism, cognitivism, and constructivism to inform their approaches to learning and instruction. This shared theoretical lineage means that many pedagogical strategies and understandings of how people learn are applied across both domains. In practice, many of the same digital tools and applications, such as Learning Management Systems (LMS), Augmented Reality (AR), Virtual Reality (VR), and Artificial Intelligence (AI), are employed by professionals in both educational and instructional technology to achieve their respective goals. This practical convergence underscores the interconnectedness of their efforts in leveraging technology for educational advancement. Indeed, some sources acknowledge that the terms are often used interchangeably, or that educational technology broadly encompasses instructional technology as a sub-field. This is rather misleading because how can broader and sub-field have different goals, primary objective, focus, scope and core principles?

Relationship between Information Technology, Educational Technology And Instructional Technology In Visuals

The above image visually represents the hierarchical and evolutionary relationship between three key fields trending in modern education: Information and Communication Technology (ICT), Educational Technology (EduTech), and Instructional Technology (InsTech).

ICT as the Foundation (Top Sphere): The large, glowing blue sphere at the top represents ICT as the foundational and broadest concept. It encompasses all technologies, tools, and resources used to create, transmit, store, share, or exchange information. This includes hardware (computers, networks, and mobile devices), software, internet services, telecommunications, and more. Based on this, we can rightly say that ICT is the foundation of mother of technology in education. Therefore, the umbilical cord flowing downwards from ICT signifies that Educational Technology *emerges from* and is *dependent*

upon the advancements and capabilities provided by ICT. Without the underlying infrastructure and innovations of ICT, educational technology as we know it could not have existed.

Educational Technology as the Offspring (Middle Sphere): The green sphere represents Educational Technology, which is a specialized application of ICT principles and tools specifically within the context of education. It focuses on how various technologies can be leveraged to improve educational system in general: teaching and learning processes, facilitate access to educational content, and enhance administrative functions within educational institutions. This is very broad. The connection upwards to ICT shows that educational technology utilizes and adapts general ICT tools for instance, learning management systems (LMS), educational software, and online collaboration platforms. The connection downwards to Instructional Technology shows that it provides the broader technological framework from which more specific instructional applications are developed.

Instructional Technology as the Specific Application (Bottom Sphere): The yellow sphere signifies Instructional Technology, which is the most focused and specific application within this hierarchy. It deals with the systematic design, development, implementation, and evaluation of the entire instructional processes and resources to improve teaching and learning. While it uses technology, its core emphasis is on the *instructional design and implementation*: how to teach effectively using appropriate tools. The connection upwards from Instructional Technology to Educational Technology indicates that it draws upon the broader technological infrastructure established by educational technology. For instance, a course designer (instructional technology professional) would use a learning management system (an educational technology) that runs on ICT infrastructure.

This implies that instructional technology is at the sharp end of delivering effective learning experiences. You take the available educational technologies and apply principles of learning and instructional design to create engaging, effective, and measurable instructional interventions. You focus on the direct impact on the learner and the specific methods of content delivery and assessment. The arrows pointing outwards suggest that instructional technology solutions can be applied across various subjects and contexts.

In summary, the image illustrates a clear progression: ICT provides the fundamental technological system, Educational Technology adapts and applies this technology for the broader educational context, and Instructional Technology then hones in on the specific design and delivery of learning experiences. Each level is distinct yet intrinsically linked and dependent on the one above it.

Importance of Understanding the Difference, Similarities and Relationship between Educational Technology and Instructional Technology to Educational Stakeholders

A clear understanding of the EduTech and InsTech distinction is essential for aligning goals, allocating resources, and ensuring equitable outcomes across the educational system.

Importance to Teachers

Teachers operate primarily within the realm of Instructional Technology. Their success hinges on having the knowledge and resources to effectively integrate technology into their daily practice to meet individual student needs and improve learning outcomes (Loyola University Maryland, 2021; NASBE, 2023). The following are the specific importance of InsTech to the teachers:

- i. Professional Development: Teachers require sustained, high-quality professional development that equips them with the pedagogical skills to utilize digital tools effectively and avoid simply reverting to traditional lecture models (ETF, 2019; U.S. Department of Education, 2004).
- ii. Learner-Centered Design: Understanding InsTech principles make teachers to upgrade their instructional practices, thereby moving toward innovative, equitable, and learner-centered classrooms (Loyola University Maryland, 2021).
- iii. Curriculum Application: Proficiency in InsTech enables teachers to effectively apply specific design models and select appropriate resources to facilitate interactive and deep learning, rather than merely consuming available content (Dick, Carey, & Carey, 2009; Instructional Technology Council, 2014).

Importance to School Administrators

School administrators navigate the broader domain of Educational Technology. Their role is to translate systemic vision into tangible instructional support and equitable access (Fallon, 2023). This is demonstrated thus:

- i. Systemic Vision and Planning: Administrators must establish a shared vision for technology integration, aligning infrastructure investments with pedagogical goals. They risk purchasing materials without a clear plan for use if they lack this strategic vision (ISTE, 2020).
- ii. Equity and Access: A core responsibility is ensuring equitable access to technology which includes reliable broadband, updated hardware, and high-quality learning experiences for all students, regardless of socioeconomic status (Fallon, 2023). This requires leveraging EduTech's administrative scope to manage funding and prioritize resource allocation (NAESP, 2023).
- iii. Support and Data-Driven Decisions: Administrators must secure and allocate necessary technology resources and provide technical support to teachers, while using data analytics to track progress and refine instructional strategies (Fallon, 2023).

Importance to Policy Makers

As pointe out by NASBE, (2023), policy makers at the local, state, and federal levels must operate from a high-level Educational Technology perspective, focusing on systemic barriers and sustainable solutions through:

- i. Addressing the Digital Divide: Policy is crucial for mitigating the digital divide; the unequal access to connectivity, devices, and necessary digital skills which can magnify existing offline inequalities (OECD, 2023). Federal and state initiatives, such as the provision of funding through programs like E-Rate, are necessary to bridge this gap through mechanisms like sustainable funding models (All4Ed, 2023; Gabenski, 2023).
- ii. Sustainable Funding and Infrastructure: Policymakers must create robust frameworks that ensure sustainable funding for both initial infrastructure investment (in EduTech) and the ongoing provision of high-quality content and professional training (in InsTech) (U.S. Department of Education, 2004).
- iii. Governance and Ethics: As technology, including Artificial Intelligence (AI), becomes pervasive, policy must address ethical issues such as data privacy, cybersecurity, and biases in technology (Gabenski, 2023). Policy makers must also ensure that national standards and curriculum frameworks adapt to measure and promote necessary competencies like Technology and Engineering Literacy (NCES, 2014).

CONCLUSION

The relationship between Educational Technology and Instructional Technology is one of macro-level governance and micro-level application. EduTech provides the systemic structure, philosophical foundation, and administrative management for technology in education, while InsTech provides the focused methodologies and tools for effective teaching and learning which are the raison d'eter of education. For the modern education professional: the teacher designing a lesson, the administrator developing a technology roadmap, or the policy maker funding infrastructure, understanding this critical difference is not merely an academic exercise. It is the essential first step toward ensuring that technological integration is strategic, equitable, and ultimately successful in advancing student knowledge, performance, and empowerment.

REFERENCES

All4Ed. (2023). State policy center: Digital equity. https://all4ed.org/state-policy-center-digital-equity/
Association for Educational Communications and Technology. (2023). AECT definition for educational technology. https://www.aect.org/aect/about/aect-definition Creswell, J. W. (n.d.). Why philosophy is important. https://laulima.hawaii.edu/access/content/group/57f376c0-02b7-4497-a92c-d4655c56485e/EDCS%20632/1-2 Creswell-ch-2.pdf

Dick, W., Carey, L., & Carey, J. O. (2009). The systematic design of instruction (7th ed.). Pearson. Education and Training Foundation. (2019). Digital teaching professional framework.

- Fallon, J. (2023). Systemic change in education. Full Mind Learning. https://www.fullmindlearning.com/blog/systemic-change-in-education
- Gabenski, K. (2023). EdTech policies: Where they stand and implications for the future. National Association of Elementary School Principals. https://www.naesp.org/blog/edtech-policies-where-they-stand-and-implications-for-the-future/
- Halimatou, S. M., & Yang, X. Q. (2014). The adoption of instructional techniques and educational technologies among teaching. Creative Education, 5, 2062–2070. http://dx.doi.org/10.4236/ce.2014.524230
- Holt, K. (n.d.). Differences between instructional and education technology. Cyborg Lifestyle. https://cyborglifestyle.com/education-technology-blog/f/differences-between-instructional-and-education-technology
- Instructional Technology Council. (2014). Scope of educational technology. 21K School. https://www.21kschool.com/us/blog/scope-of-educational-technology/
- International Society for Technology in Education. (2020). Essential conditions for effective tech use in schools. https://iste.org/essential-conditions-for-effective-tech-use-in-schools
- Januszewski, A., & Molenda, M. (Eds.). (2008). Educational technology: A definition with commentary. Routledge.
- Krishna, H. (2020). IT philosophy: Philosophical paradigms in information technology research. International Research Journal of Information Technology, 3(2), 22–31. https://rsisinternational.org/journals/ijrias/articles/it-philosophy-philosophical-paradigms-in-information-technology-research/
- Lee, J., Owens, S., & Benson, P. (2002). Instructional technology: The application of various forms of technology to the teaching and learning process. ERIC. https://files.eric.ed.gov/fulltext/ED504562.pdf
- Loyola University Maryland. (2021). Why is educational technology in education important? School of Education

 Blog. https://www.loyola.edu/school-education/blog/2021/what-is-educational-technology.html
- Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge (TPACK): A framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054.
- National Association of State Boards of Education. (2023). Connecting the national educational technology plan to state policy: A roadmap for state boards.
- National Center for Education Statistics. (2014). The Nation's Report Card: Technology and engineering literacy (TEL) assessment.
- Organization for Economic Co-operation and Development. (2023). Digital divide in education. https://www.oecd.org/en/topics/digital-divide-in-education.html
- Tyonyion, R. S., & Zakari, M. J. (2025a). The symbiotic nexus: Instructional videos as catalysts for heutagogy in 21st century learning. *International Journal of Research Publication and Reviews*, 6(7), 60–65.
- Tyonyion, R. S., & Zakari, M. J. (2025b). The right place of technological tools in the classroom: The lenses of instructional technology expert. *International Journal of Educational Technology, 1(3), 12–21.*
- Tyonyion, R. S., & Zakari, M. J. (2025c). Instructional analysis: The basis of effective instructional delivery. *International Journal of Research Publication and Reviews*, *6*(7).
- Zakari, M. J., & Tyonyion, R. S. (2025a). Unveiling the instructional communication concept (TCC) model: A paradigm shift in overcoming noise in teaching. *International Journal of Research and Reviews,* 6(7), 2767–2777. https://doi.org/10.55248/gengpi.6.0725.25116
- U.S. Department of Education. (2004). A retrospective on twenty years of education technology policy.